Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(8): e29657, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38655364

RESUMO

The need to find alternative materials to replace aqueous amine solutions for the capture of CO2 in post-combustion technologies is pressing. This study assesses the CO2 sorption capacity and CO2/N2 selectivity of three dicationic ionic liquids with distinct anions immobilized in commercial mesoporous silica support (SBA- 15). The samples were characterized by UART-FTIR, NMR, Raman, FESEM, TEM, TGA, Magnetometry (VSM), BET and BJH. The highest CO2 sorption capacity and CO2/N2 selectivity were obtained for sample SBA@DIL_2FeCl4 [at 1 bar and 25 °C; 57.31 (±0.02) mg CO2/g; 12.27 (±0.72) mg CO2/g]. The results were compared to pristine SBA-15 and revealed a similar sorption capacity, indicating that the IL has no impact on the CO2 sorption capacity of silica. On the other hand, selectivity was improved by approximately 3.8 times, demonstrating the affinity of the ionic liquid for the CO2 molecule. The material underwent multiple sorption/desorption cycles and proved to be stable and a promising option for use in industrial CO2 capture processes.

2.
Phys Chem Chem Phys ; 25(13): 9320-9335, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36920377

RESUMO

Global warming linked to the industrial emissions of greenhouse gases may be the end of mankind unless it is adequately and timely handled. To prevent irreversible changes to the climate of the Earth, numerous research groups are striving to develop robust CO2 sorbents. Dialkyl carbonates (DACs) and CO2 exhibit obvious chemical similarities in their structure and properties. The degrees of oxidation of all atoms composing DACs and CO2 are identical resulting in very similar nucleophilicities and electrophilicities of all interaction centers. While both compounds possess relatively high partial atomic charges on their polar moieties, the molecular geometries prevent tight binding of the head groups. The computed DAC-DAC binding energies are ∼40 kJ mol-1, whereas the effect of the alkyl chain length is marginal. The phase transition points and shear viscosities of DACs are very low. We herein hypothesize and numerically rationalize that DACs represent noteworthy physical sorbents for CO2 thanks to the similar sorbent-CO2 and sorbent-sorbent interaction energies. By reporting in silico-derived sorption thermodynamics at various conditions, spectral and structural properties, and experimentally derived CO2 capacities and recyclabilities, we highlight the mutual affinity of DACs and CO2. Indeed, the experimentally determined CO2 sorption capacity of 0.88 mol% (diethyl carbonate) at 278.15 K and 30 bar is competitive. The unprecedentedly low DAC-CO2 binding energies, ∼14 kJ mol-1, suggest a low-cost desorption process and outstanding recyclability of the sorbent. We also note that DACs possessing long alkyl chains (butyl, hexyl, octyl) exhibit negligible volatilities, while preserving the liquid aggregate state over a practically important temperature range. The reported results may foster the development of a new class of CO2 scavengers with possibly quite peculiar characteristics.

3.
Heliyon ; 9(2): e13298, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36755595

RESUMO

Encapsulated ionic liquids as green solvents for CO2 capture are reported in this work. We present a novel combination of water-based poly(ionic liquid) and imidazolium-based ionic liquids (Emim[X]). Poly(diallyldimethylammonium tetrafluoroborate)/Emim[X] capsules were developed for the first time using Nano Spray Dryer B-90. Capsules were characterized by FTIR, SEM/EDX, TEM, TGA, DSC, CO2 sorption, and CO2/N2 selectivity, CO2 sorption kinetic and recycling were also demonstrated. Comparing the capsules reported in this work, the combination of poly(diallyldimethylammonium tetrafluoroborate) and the ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate (P[DADMA]/BF4) showed great potential for CO2 capture and CO2/N2 separation, providing higher results (53.4 mg CO2/g; CO2/N2 selectivity: 4.58).

4.
J Environ Manage ; 268: 110340, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32383660

RESUMO

CO2 separation from natural gas is considered to be a crucial strategy to mitigate global warming problems, meet product specification, pipeline specs and other application specific requirements. Silica xerogels (SX) are considered to be potential materials for CO2 capture due to their high specific surface area. Thus, a series of silica xerogels functionalized with imidazolium, phosphonium, ammonium and pyridinium-based room-temperature ionic liquids (RTILs) were synthesized. The synthesized silica xerogels were characterized by NMR, helium pycnometry, DTA-TG, BET, SEM and TEM. CO2 sorption, reusability and CO2/CH4 selectivity were assessed by the pressure-decay technique. Silica xerogels containing IL demonstrated advantages compared to RTILs used as separation solvents in CO2 capture processes including higher CO2 sorption capacity and faster sorption/desorption. Using fluorinated anion for functionalization of silica xerogels leads to a higher affinity for CO2 over CH4. The best performance was obtained by SX- [bmim] [TF2N] (223.4 mg CO2/g mg/g at 298.15 K and 20 bar). Moreover, SX- [bmim] [TF2N] showed higher CO2 sorption capacity as compared to other reported sorbents. CO2 sorption and CO2/CH4 selectivity results were submitted to an analysis of variance and the means compared using Tukey's test (5%).


Assuntos
Líquidos Iônicos , Dióxido de Silício , Ânions , Dióxido de Carbono , Cátions
5.
RSC Adv ; 10(57): 34895-34902, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-35514376

RESUMO

CO2 emissions and global warming have increased with the growth of the world economy and industrialization. Direct synthesis of dimethyl carbonate (DMC) from CO2 and methanol (CH3OH) has been considered a promising route from a green chemistry point of view due to global warming mitigation by CO2 emission reduction. However, DMC yield, when obtained by direct synthesis, is limited due to unfavorable thermodynamics and catalyst deactivation by water formation in the reaction process. This problem motivated us to investigate the effect of dehydration on DMC production by direct synthesis. Herein, different dehydrating agents (2,2-dimethoxypropane, sodium sulfate, magnesium oxide and butylene oxide) were combined with molecular sieves to remove the water and minimize the reverse reaction. A new reactor presenting a compartment to accommodate molecular sieves in the gas phase was developed as well. The chemical/product analysis was carried out by gas chromatography and the results were used to calculate methanol conversion and DMC selectivity. The highest methanol conversion value was found for the combination of molecular sieves in the gas phase with 2,2-dimethoxypropane in the reaction liquid phase (methanol conversion = 48.6% and 88% selectivity). The results showed that dehydration systems may promote increased yield in direct DMC synthesis under mild conditions. The dehydration systems tested in this work exhibited excellent conversion and yield as compared to other reported studies.

6.
Heliyon ; 5(7): e02183, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31388596

RESUMO

Physical immobilization of ionic liquids (ILs) in solid materials appears as an interesting strategy for the development of new sorbents for CO2 separation from natural gas. In this work the effect of physical immobilization of two ionic liquids with different anions (bmim[Cl] and bmim[OAc]) on two mesoporous supports (commercial silica SBA-15 and silica extracted from rice husk) was evaluated for CO2 separation from natural gas by experimental determination of CO2 sorption, CO2/CH4 selectivity and sorption kinetics. Results showed that the pure supports present the greatest CO2 sorption capacity when compared to immobilized ILs. However, CO2 removal efficiency improves considerably in the CO2/CH4 mixture when ILs are immobilized in these supports. The best selectivity results were obtained for supports immobilized with the IL bmim[Cl] and values increased for SIL-Cl by 37% and SBA-Cl 51% when compared with their respective supports. The contribution of SIL-Cl (3.03 ± 0.12) to separation performance (CO2/CH4) is similar to SBA-Cl (3.29 ± 0.39). ILs supported also presented fast sorption kinetics when compared to pure ILs thus being an interesting alternative in the search for highly efficient and low-cost separation processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...